US009298586B2

a2 United States Patent 10) Patent No.: US 9,298,586 B2
Sowerby et al. (45) Date of Patent: *Mar. 29, 2016
(54) SUSPENDING AND RESUMING A GRAPHICS 6,657,634 Bl 12/2003 Sinclair et al.
APPLICATION EXECUTING ON A TARGET ?3%2%} Ei %882 I];Temetce_k il
,020, ernstein et al.
DEVICE FOR DEBUGGING 7,287,246 B2 10/2007 Tan et al.
7,406,625 B2 7/2008 Brock et al.
(75) Inventors: Andrew M. Sowerby, Palo Alto, CA 7,451,332 B2 11/2008 Culbert et al.
(US); Jean-Francois Roy, Cupertino, 7,453,465 B2 11/2008 Schmieder et al.
CA (US); Filip Tliescu, Ben Lomond 7,487,371 B2 2/2009 Simeral et al.
CA (US)’ ’ ’ 7,711,990 B1* 5/2010 Nickolls etal.cccc.cccoc 714/37
8,006,232 Bl 8/2011 Rideout et al.
. . 8,327,175 B2 12/2012 Kim et al.
(73) Assignee: Apple Inc., Cupertino, CA (US) 2002/0083217 Al* 6/2002 Wardetal. ..o.ocoovvereon. 709/328
)) o) 2002/0140710 Al 10/2002 Fliflet
(*) Notice: Subject to any disclaimer, the term of this 2004/0098639 Al 52004 Liu
patent is extended or adjusted under 35 2007/0139421 Al 6/2007 Chenetal.
U.S.C. 154(b) by 674 days. 2008/0049009 Al 2/2008 Khodorkovsky
This patent is subject to a terminal dis- (Continued)
claimer.
OTHER PUBLICATIONS
(21) Appl. No.: 13/306,530
Keng-YuLin, “GPTT: A Cross-Platform Graphics Performance Tun-
(22) Filed: Nov. 29, 2011 ing Tool for Embedded System,” National Sun Yat-sen University,
2006, 61 pages.
(65) Prior Publication Data (Continued)
US 2013/0091494 A1 Apr. 11, 2013
Related U.S. Application Data Primary Examiner — Insun Kang
(60) Provisional application No. 61/546,041, filed on Oct. (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
11, 2011.
(51) Imt.ClL (57) ABSTRACT
GO6F 9/44 (2006.01)
GO6F 11/36 (2006.01) Debugging a graphics application executing on a target
(52) US.CL device. The graphics application may execute CPU instruc-
CPC oo GOG6F 11/3624 (2013.01) tions to generate graphics commands to graphics hardware
(58) Field of Classification Search for generation of graphics on a display. A breakpoint for the
None graphics application may be detected at a first time. In
See application file for complete search history. response to detecting the breakpoint, one or more graphics
commands which were executed by the graphics hardware
(56) References Cited proximate to the first time may be displayed. Additionally,
US. PATENT DOCUMENTS source code corresponding .to CPU instructions Whigh gener-
ated the one or more graphics commands may be displayed.
6,003,143 A 12/1999 Kim et al.
6,067,643 A 5/2000 Omtzigt
6,412,106 Bl 6/2002 Leask et al. 32 Claims, 17 Drawing Sheets

execute application
on target device
602

detect breakpoint
604
capture information refated to
application
801
suspend execution of

application
80

execute debugging application
610

) :
= R
:

provide debugging information
refated o the appiication fo the

T
:
v

resume execution of the
application
614

US 9,298,586 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0082008 Al*
2009/0158257 Al*
2009/0219288 Al*
2009/0228873 Al
2009/0309885 Al
2010/0017788 Al*
2010/0050158 Al 2/2010 Daniel

2011/0191752 Al 8/2011 Cleraux et al.

2011/0307870 Al* 12/2011 Stairsetal. 717/128

3/2009 Thorellocoovvvivievinne 455/423
6/2009 Xuetal. . . 717/129
9/2009 Heirich 345/426
9/2009 Drukman et al.
12/2009 Samson et al.
1/2010 Bronkhorst et al. 717/125

2012/0042303 Al* 2/2012 Demetriou et al . T17/129
2012/0151446 Al* 6/2012 Sathyaetal. .. . 717/125
2012/0167056 Al* 6/2012 Brunswig et al. . 717/129
2012/0272218 Al 10/2012 Bates
2012/0272219 Al 10/2012 Bates
2012/0323553 Al* 12/2012 Aslametal. 703/28
2013/0091493 Al 4/2013 Sowerby et al.

OTHER PUBLICATIONS

Pix User’s Guide, msdn, 2006, <http://msdn.microsoft.com/en-us/
library/ee417207%28v=V'S.85%29.aspx>, 54 pages. [Retrieved Oct.
13, 20091].

Nvidia, “PerfHUD 6 User Guide,” DA-01231-001_v09, Nov. 2008,

37 pages.
AMD Developer Central, “GPU PerfStudio 2.3,” launched Sep. 27,
2010, <http://developer.amd.com/gpu/PerfStudio/pages/

APITraceWindow.aspx>, 11 pages. [Retrieved Oct. 13, 2010].
McDowell, Charles E. et al., “Debugging Concurrent Programs”,
ACM Computing Surveys, vol. 21, No. 4, Dec. 1989, ACM 0360-
0300/89/1200-0593, pp. 593-622.

Moher, Thomas G., “Provide: A Process Visualization and Debug-
ging Environment”, IEEE Transactions of Software Engineering,
vol. 14, No. 6, Jun. 1988, 0098-5589/88/0600-0849, pp. 849-857.
Mukherjea, Sougata et al., “Toward Visual Debugging: Integrating
Algorithm Animation Capabilities within a Source-Level Debug-
ger”, ACM Transaction on Computer-Human Interaction, vol. 1, No.
3, Sep. 1994, pp. 215-244.

Rosenberg, Jonathan B., “How Debuggers Work: Algorithms, Data
Structures, and Architecture”, Chapter 2, Wiley Publishing Copy-
right, New York, NY, pp. 21-37, Jan. 1, 1996.

International Search Report and Written Opinion of the International
Searching Authority, PCT Application Serial No. PCT/US2012/
059826, Nov. 27,2012, 12 pp.

* cited by examiner

U.S. Patent Mar. 29, 2016 Sheet 1 of 17 US 9,298,586 B2

150
'

100—\ Vs 150

FIG. 1B

FIG. 1C

U.S. Patent Mar. 29, 2016 Sheet 2 of 17 US 9,298,586 B2

190 [—

FIG. 1E

U.S. Patent

Mar. 29, 2016 Sheet 3 of 17 US 9,298,586 B2
CPU GPU
202 204

bus
interface
206
CPU GPU
memory mermory
208 210
FIG. 2A
display
block
260
cPU main GPU
memory
202 258 204

FIG. 2B

U.S. Patent

US 9,298,586 B2

Mar. 29, 2016 Sheet 4 of 17
host 100
development
environment
410
target device 150
debug
application
460
I
application graphics graphics
pp450 framework driver
- 470 480
playback
application
455

FIG. 3

U.S. Patent

Mar. 29, 2016 Sheet S of 17

verfex data
402

A J

vertex shader
404

Y

primitive assembly

US 9,298,586 B2

406
texture data shader uniform data
416 418
¥
rasterization
408

A

fragment shader
410

A

per-fragment operations
412

\

frame buffer
414

FIG. 4A

U.S. Patent

Mar. 29, 2016

texture data

Sheet 6 of 17

verlex dala
402

Y

per-vertex operations
454

\ 4

primitive assembly
406

Y

416

A

raslerization
408

A 4

per-fragment operations
412

Y

frame buffer
414

FIG. 4B

US 9,298,586 B2

U.S. Patent Mar. 29, 2016 Sheet 7 of 17 US 9,298,586 B2

pair target device
to host device
202

Y

execute application
on target device
504

Y

detect breakpoint
906

y
suspend execution of
application
908

A
receive information related to
application
910

\

display graphics commands
proximate fo the breakpoint
812

'

display source code which
resulted in the graphics
commands
914

'

display graphical data
corresponding to the graphics
commands
216

FIG. 5

U.S. Patent Mar. 29, 2016 Sheet 8 of 17 US 9,298,586 B2

execute application
on target device
602

Y

detect breakpoint
604

A
capture information related to
application
606

y
suspend execution of
application
608

Y

execute debugging application
610

Y

provide debugging information
related to the application to the
host device
612

'

resume execution of the
application
614

FIG. 6

US 9,298,586 B2

Sheet 9 of 17

Mar. 29, 2016

U.S. Patent

q& .G\l s : : : ; FEOO OGN A o G B o e o

A A
& DRG0 AR X,

T R T AT

LT

B o

% “.““nn“nn“nn“nn“nn“nn“nn#u#n&%.n.n., e

U.S. Patent Mar. 29, 2016 Sheet 10 of 17 US 9,298,586 B2

FIG. 7B

U.S. Patent Mar. 29, 2016 Sheet 11 of 17 US 9,298,586 B2

FIG. 7C

U.S. Patent Mar. 29, 2016 Sheet 12 of 17 US 9,298,586 B2

Autebebugerker sarkeri®atran
Heinteger £ » 83
giBindVervendrrayiBsistrunturavertendrraly

Fur {éhﬁﬁatériaiﬁgage smateriallisage in Istructuretlodelfroun
satarisilsegesly

¥
ke

P
Enp)

B

sunTime - flgarisunTis
Time & §.5%, 1.8}

sunTine = MINisun

FIG. 7D

US 9,298,586 B2

Sheet 13 0of 17

Mar. 29, 2016

U.S. Patent

V8 "Old

e tess g 3
aa14ap

PRI TR

AT H

420y

."“““““.“nnnnnnnn“““““n%.wn“.n.n.nnn.“.“n“.“n“n“.“.“n“.nnnnn.“.“.“n“.“.“.“.“.“.“.nnnnn.“n“.“.“.“.“.“.“.“.n.n.n.““x.“nnu.unnn.“.“. S Sadmammdna

U.S. Patent

Mar. 29, 2016

Sheet 14 of 17

TR
S
VI e eddranpain B KT Tty
131 oleny TennneGL TRTURE 200
1312 glnetmionueniGl TOUBED
T e TG TR 2019
1318 el TENTURATY
IS sl e TRTRE 2 D
F1P o Tehareter B YEKRIRE 20

SR TENTIRE DI

LRE G

3

ot

US 9,298,586 B2

FIG. 8B

US 9,298,586 B2

Sheet 15 0of 17

Mar. 29, 2016

U.S. Patent

PRI

- Pty T B BT BI0TAL
L TN ALY

: : o s s ¢
NEERNSEY RS H AN e

SWAYD N0 R

R E PNT R S 3

g N O
e od St i B M

.. Sen i A

U.S. Patent Mar. 29, 2016 Sheet 16 of 17 US 9,298,586 B2

3
3g
S qiindg Tentus
ST

FRRL RN P e =
13l atarmeeni G TTERIRE 20 CUIBINERE 3

FIG. 9B

U.S. Patent

Mar. 29, 2016 Sheet 17 of 17

US 9,298,586 B2

vt

e

immi

SNt eind profectiondatriy o GLIMabrindNakelrthei-6,%,

PigvPesitions il » SixVestorBekelsostit) » v, 187, sinfil} » vl
Hitntorsisd = fadrylelarsiih:
PlghtRadiiiil = 35N

toriakedd By,
3*41&3*“& T, BUBERY

;ﬁ
-t

intlisagest}

s

sibroey nater

{Eiecteriinundirectinnfortine {lF inedntarvall
* we FOdEuE)
ca:c;fi Jm*’ae) H

= HiRisunTin

® IEE, &

pathSente » sinfipnthingle

T

pathbosis # costipnthaglel,

vricForTine {0F Tineintervallting

] ce*@«:m’tsa*w* % fm*%a?*»makevce
.87, .81, B, L9, By

G

¢

s St rixdSuitiplyipronetiontistrix, camenatrindy

FIG. 9C

US 9,298,586 B2

1
SUSPENDING AND RESUMING A GRAPHICS
APPLICATION EXECUTING ON A TARGET
DEVICE FOR DEBUGGING

PRIORITY INFORMATION

This application claims benefit of priority of U.S. provi-
sional application Ser. No. 61/546,041 titled “Debugging a
Graphics Application Executing on a Target Device” filed
Oct. 11, 2011, whose inventors were Andrew M. Sowerby,
Benjamin N. Lipchak, Jean-Francois Roy, Max Drukman,
Matthew Firlik, and Christopher Friesen, which is hereby
incorporated by reference in its entirety as though fully and
completely set forth herein.

FIELD

The present embodiments relate to the field of computer
graphics, and more particularly to debugging graphics appli-
cations.

DESCRIPTION OF THE RELATED ART

Many modern devices include high end graphical process-
ing systems for presenting graphics on a display. Due to their
complexity, development of graphical software applications
for such devices is often difficult. For example, it is difficult
for developers to perform debugging on target devices which
uses a different graphics system than the development sys-
tem. Accordingly, in order to assist developers in creating
graphical software applications, improved tools are desired
for debugging these applications.

SUMMARY

Various embodiments are presented of a system and
method for debugging graphics applications executing on a
target device.

The target device and a host device may be paired together.
The host device may execute a development application to
perform development and/or debugging of an application on
the target device. The host device may deploy the application
to the target device and begin execution of the application on
the target device. The host device may also deploy other
programs on the target device in order to capture information
regarding the execution of the application on the target device
and/or debug the application. For example, the host device
may deploy one or more measurement and/or debugging
applications for performing debugging.

The target device may include a graphics system which
includes both a central processing unit (CPU) and a graphics
processing unit (GPU). The CPU and GPU may together
execute the application. For example, the graphics applica-
tion may execute CPU instructions which generate graphics
commands for provision to the GPU for providing graphics
on a display of the target device. A breakpoint (or capture
event) may be reached during execution of the application
(e.g., which was inserted in the graphics application or
invoked response to user input, e.g., during execution, as
desired). In response to the breakpoint, the target device may
suspend execution of the application, e.g., saving the current
state of the application for later resumption. Additionally, the
target device may capture information, e.g., for use in debug-
ging the application. For example, the target device may
capture information related to the current graphics frame
(e.g., the first full frame after the breakpoint is reached), such
as the graphics commands executed to generate the current

10

15

20

25

30

35

40

45

55

60

65

2

frame. This information may be provided back to the host
device for performing the debugging.

Graphics commands that were executed proximate to the
breakpoint (e.g., the graphics commands of'the first full frame
after the breakpoint) may be displayed, e.g., on a display of
the host device to a developer of the application. Additionally,
source code corresponding to the CPU instructions which
generated the one or more graphics commands may be dis-
played. Further, graphics data corresponding to the graphics
command may also be displayed. In one embodiment, a user
may select one of the graphics commands, and the corre-
sponding source code which caused the graphics command
may be displayed. Additionally, the corresponding graphics
of'the graphics command may also be displayed. Thus, a user
may be able to view the inter-related source code, graphics
command, and/or graphics data. More specifically, the user
may be able to view the source code and/or graphics data
associated with a graphics command executed in the frame
after the breakpoint (although other embodiments are envi-
sioned, e.g., where graphics commands prior to the break-
point may be displayed). These debugging actions may be
performed in conjunction with a debug application executing
on the target device (e.g., acting to provide saved information
interactively or simply at the beginning of the debugging). In
one embodiment, the debug application may provide the abil-
ity to replay graphics (e.g., GPU) commands that occurred
proximate to the breakpoint and provide that information to
the host device.

After debugging is completed, e.g., after a user ends the
debugging or requests that the application resume execution,
the target device may resume execution of the application,
e.g., by loading the saved state and continuing execution of
the application. In one embodiment, the process of suspend-
ing the application, performing debugging (e.g., using a
debugging application executing on the target device, e.g., in
conjunction with the development environment executing on
the host device), and resuming the application may be per-
formed in a seamless manner, e.g., which is transparent to the
user.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present embodiments can be
obtained when the following detailed description of the pre-
ferred embodiment is considered in conjunction with the
following drawings, in which:

FIGS. 1A-1E illustrate various systems for implementing
various embodiments;

FIGS. 2A and 2B are block diagrams of a system including
a CPU and a GPU, according to some embodiments;

FIG. 3 is a block diagram of software executing on a host
device and a target device, according to one embodiment;

FIGS. 4A-B are exemplary block diagrams illustrating
embodiments of a graphics pipeline;

FIG. 5 is a flowchart diagram illustrating one embodiment
of a method for debugging an application executing on a
target device;

FIG. 6 is a flowchart diagram illustrating one embodiment
of' a method for suspending and resuming execution of an
application to perform debugging; and

FIGS. 7A-9C are exemplary GUIs for an corresponding to
the methods of FIGS. 5 and 6, according to one embodiment.

While embodiments described herein are susceptible to
various modifications and alternative forms, specific embodi-
ments thereof are shown by way of example in the drawings
and are herein described in detail. It should be understood,
however, that the drawings and detailed description thereto

US 9,298,586 B2

3

are not intended to limit the embodiments to the particular
form disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present embodiments as defined by the
appended claims.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Terms

The following is a glossary of terms used in the present
application:

Memory Medium—Any of various types of memory
devices or storage devices. The term “memory medium” is
intended to include an installation medium, e.g., a CD-ROM,
floppy disks, or tape device; a computer system memory or
random access memory such as DRAM, DDR RAM, SRAM,
EDO RAM, Rambus RAM, etc.; a non-volatile memory such
as a Flash, magnetic media, e.g., a hard drive, or optical
storage; registers, or other similar types of memory elements,
etc. The memory medium may include other types of memory
as well or combinations thereof. In addition, the memory
medium may be located in a first computer in which the
programs are executed, or may be located in a second differ-
ent computer which connects to the first computer over a
network, such as the Internet. In the latter instance, the second
computer may provide program instructions to the first com-
puter for execution. The term “memory medium” may
include two or more memory mediums which may reside in
different locations, e.g., in different computers that are con-
nected over a network. The memory medium may store pro-
gram instructions (e.g., embodied as computer programs) that
may be executed by one or more processors.

Carrier Medium—a memory medium as described above,
as well as a physical transmission medium, such as a bus,
network, and/or other physical transmission medium that
conveys signals such as electrical, electromagnetic, or digital
signals.

Computer System—any of various types of computing or
processing systems, including a personal computer system
(PC), mainframe computer system, workstation, network
appliance, Internet appliance, personal digital assistant
(PDA), personal communication device, smart phone, televi-
sion system, grid computing system, or other device or com-
binations of devices. In general, the term “computer system”
can be broadly defined to encompass any device (or combi-
nation of devices) having at least one processor that executes
instructions from a memory medium.

Automatically—refers to an action or operation performed
by a computer system (e.g., software executed by the com-
puter system) or device (e.g., circuitry, programmable hard-
ware elements, ASICs, etc.), without user input directly
specifying or performing the action or operation. Thus the
term “automatically” is in contrast to an operation being
manually performed or specified by the user, where the user
provides input to directly perform the operation. An auto-
matic procedure may be initiated by input provided by the
user, but the subsequent actions that are performed “automati-
cally” are not specified by the user, i.e., are not performed
“manually”, where the user specifies each action to perform.
For example, a user filling out an electronic form by selecting
each field and providing input specitying information (e.g.,
by typing information, selecting check boxes, radio selec-
tions, etc.) is filling out the form manually, even though the
computer system must update the form in response to the user
actions. The form may be automatically filled out by the

10

15

20

25

30

35

40

45

55

60

65

4

computer system where the computer system (e.g., software
executing on the computer system) analyzes the fields of the
form and fills in the form without any user input specifying
the answers to the fields. As indicated above, the user may
invoke the automatic filling of the form, but is not involved in
the actual filling of the form (e.g., the user is not manually
specifying answers to fields but rather they are being auto-
matically completed). The present specification provides
various examples of operations being automatically per-
formed in response to actions the user has taken.

FIGS. 1A-1E—Exemplary Systems

FIG. 1A illustrates a computer system 100 (host) that is
coupled to a target device 150. The host computer system 100
may be any of various computer systems. The target device
150 may also be any of various computer systems. In some
embodiments, the target device 150 may be a portable or
mobile device, such as a mobile phone, PDA, audio/video
player, etc. In embodiments described herein, the computer
system 100 may be configured to act as a host device, which
may manage execution of an application (e.g., a graphics
application) on the target device 150, e.g., for application
development, as described herein.

As shown in FIG. 1A, the computer system 100 may
include a display device configured to display a graphical user
interface (GUI), e.g., of a control or development application
executing on the computer system 100. The graphical user
interface may include any type of graphical user interface,
e.g., depending on the computing platform. The computer
system 100 may include at least one memory medium on
which one or more computer programs or software compo-
nents may be stored. For example, the memory medium may
store the control application, e.g., which may be executable to
perform at least a portion of the methods described herein.
Additionally, the memory medium may store a programming
development environment application (or developer’s tools
application) used to create applications, e.g., for execution by
the target device 150. The memory medium may also store
operating system software, as well as other software for
operation of the computer system. Various embodiments fur-
ther include receiving or storing instructions and/or data
implemented in accordance with the foregoing description
upon a carrier medium.

As also shown in FIG. 1A, the target device 150 may
include a display, which may be operable to display graphics
provided by an application executing on the target device 150.
The application may be any of various applications, such as,
for example, games, internet browsing applications, email
applications, phone applications, productivity applications,
etc. The application may be stored in a memory medium of
the target device 150. The target device 150 may include a
central processing unit (CPU) and a graphics processing unit
(GPU) which may collectively execute the application. For
example, the CPU may generally execute the application as
well as a graphics framework (e.g., OpenGL, DirectX, etc.)
and graphics driver which may handle any graphics calls or
commands that are provided by the application during execu-
tion. The graphics driver may in turn provide GPU commands
to the GPU, which may execute these commands to provide
display capabilities for the application. As used herein, a
“graphics application” refers to an application which pro-
vides graphics commands for displaying graphics of the
application on a display. In other words, the term “graphics
application” refers to a software application that, when
executed, causes the display of various graphics on a display,
e.g., via graphics commands.

The memory medium of the target device 150 may also
store one or more programs for implementing embodiments

US 9,298,586 B2

5

described herein. For example, the memory medium of the
target device 150 may store a program for capturing informa-
tion regarding graphics commands received from the appli-
cation. The memory medium of the target device 150 may
also store a program for debugging the application, e.g.,
which may be provided from the computer system 100. In
further embodiments, the programs may be stored on the
computer system 100 and may be read onto the target device
150 for execution.

FIG. 1B illustrates a system including the computer system
100 that is coupled to the target device 150 over a network
125. The network 125 can be any of various types, including
a LAN (local area network), WAN (wide area network), the
Internet, or an Intranet, among others. In general, the com-
puter system 100 and the target device 150 may be coupled in
any of various manners, such as wired (e.g., over a serial bus,
such as USB, Ethernet, Internet, etc.) or wireless (e.g.,
WLAN, Bluetooth, IR, etc.).

FIG. 1C illustrates a system where the host computer sys-
tem 100 is coupled to the target device 150 as well as another
target device 175. As shown, the target device 175 may be a
different type of target device than the target device 150. In
one embodiment, the application may be executed on both of
the target device 150 and 175. For example, the application
may be debugged on either or both of the target devices 150
and 175. Accordingly, debugging results may be provided
that are generic and/or specific to a particular target device.
Thus, the results and/or testing may vary among different
types of target devices.

FIGS. 1D and 1E illustrate systems where a computer
system may be the target device. In FIG. 1D, the computer
system 100 may be the target device as well as the host device.
In this embodiment, the computer system 100 may execute
both the target application and the control program, thus
effectively operating as both the host and target device. How-
ever, embodiments described herein usually involve two
separate devices, a host and a target. For example, in FIG. 1E,
a different computer system 190 may be the target device. The
two computer systems 100 and 190 may be coupled over the
network 125 as shown, or may be coupled directly, as desired.
FIGS. 2A-2B—Exemplary Block Diagrams of Graphics Sys-
tem Hardware

FIGS. 2A and 2B are block diagrams of embodiments of
target device hardware implementing a graphics system. It is
noted that FIGS. 2A and 2B are simplified block diagrams,
where various components that would normally be present,
but which are not necessary for an understanding of the
present embodiments, are omitted for simplicity and clarity.

More specifically, FIG. 2A illustrates one embodiment of a
hardware architecture of a target device and/or computer
system, such as 150, 175, 100 or 190. As shown, the CPU 202
and CPU memory 208 may be coupled together (e.g., over a
system bus) and GPU 204 and GPU memory 210 may also be
coupled together. The CPU 202 and GPU 204 (and their
corresponding memories) may be coupled via bus interface
206. For example, in one embodiment, the GPU 204 and GPU
memory 210 may be implemented as a video system having a
different system interface than the CPU 202 and CPU
memory 208. For example, the GPU 204 and GPU memory
210 may be implemented as a video card that is plugged in to
a slot of the computer system 100 or 190. The video card may
be implemented as a PCI, PCle, AGP, etc. card. Accordingly,
bus interface 206 may interface with the system bus of the
CPU 202 and the bus of the video card. The target device, 150,
175,100 or 190 may also include display logic (notshown) as
well as various other logic.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2B illustrates an alternative embodiment of a hard-
ware architecture that may be implemented by target device
150 or 175. In this architecture, the CPU 202 and GPU 204
may be coupled over a system bus and may share a common
orunified memory 258 (although separate memories are envi-
sioned). Additionally, a display block 260 may be coupled to
memory 258 and GPU 204 for displaying various images on
the display of the target device 150 and 175. This implemen-
tation may apply to devices whose internal hardware are all or
mostly provided within a single integrated chip, e.g., as a
system on a chip (SOC).

It should be noted that the above hardware architectures of
the graphics system are exemplary and are provided for illus-
tration purposes only. Thus, various modifications (e.g., of
blocks or connectivity) resulting in different hardware archi-
tectures are envisioned.

FIG. 3—Exemplary Block Diagram of Software Architecture

FIG. 3 is ablock diagram of one embodiment of a software
architecture that may implement various embodiments
described herein.

As shown in FIG. 3, the host 100 may execute a develop-
ment environment or control application 410. The develop-
ment environment 410 may be used to develop applications
for execution on the target device 150. The development
environment 410 may also control execution of a developed
application 450, a playback application 455, a debug appli-
cation 460, etc. that may be executing on the target device
150.

As also shown in FIG. 3, the target device 150 may execute
avariety of programs, including application 450, debug appli-
cation 460, playback application 455, graphics framework
470, and graphics driver 480. While this diagram largely
shows programs that are executed by the CPU of the target
device 150, note that the GPU of the target device 150 may
also execute programs, e.g., shaders, that may be provided by
the application 450.

In more detail, the application (or graphics application)
450 may be an application that is under development or
testing, e.g., within the development environment 410. For
example, a developer may be developing the application on
the host 100 for ultimate deployment and execution on the
target device, and may periodically need to test or debug the
application while it is executing on the target device 150.
Correspondingly, the development environment 410 may be
used to deploy the application to the target device 150 for
execution and testing.

The development environment 410 may also deploy other
software to the target device 150 to assist in developing the
application 450, e.g., once the developer has designated that
the target device 150 is used for development of the applica-
tion 450. For example, the development environment 410
may deploy the debug application 460 which may be used to
debug the application 450 on the target device 150, e.g., as
described herein. In some embodiments, the playback func-
tionality implemented by the playback application 455 may
be incorporated in the debug application 460, as desired.

The graphics framework 470 may be any of various types
of graphics frameworks, e.g., various versions of openGL
(including openGL for embedded systems (ES)), DirectX,
etc. The graphics framework 470 may receive API calls from
the application 450 for performing graphics framework func-
tions. In turn, the graphics framework 470 may provide com-
mands to the graphics driver 480, which may also be execut-
ing on the target device 150. Finally, the graphics driver 480
may provide GPU commands to the GPU. The CPU execut-
ing the graphics framework 470 and the graphics driver 480,

US 9,298,586 B2

7

along with the GPU may form a graphics pipeline, such as
those embodiments described in FIGS. 4A and 4B below.

Note that the above software architecture is exemplary
only and other variations and modifications are envisioned.
For example, in some embodiments, the graphics framework
470 may not be necessary and/or may be implemented as part
of'the application 450 rather than being a separate executable.
FIGS. 4A and 4B—Exemplary Graphics Pipeline

FIGS. 4A and 4B illustrate exemplary graphics pipelines.
More particularly, FIG. 4A illustrates an OpenGL embedded
system (ES) 2.0 pipeline and FIG. 4B illustrates an OpenGL
embedded systems (ES) 1.1 pipeline, e.g., which may be
suitable for a target device 150, such as a mobile device.
However, the pipelines of FIGS. 4A and 4B may also be
implemented on a computer system such as computer system
100, e.g., with further modifications. For example, a typical
OpenGL pipeline may be used for the computer system 100
(rather than an ES pipeline). The pipelines of FIGS. 4A and
4B may be implemented using the graphics system of FIG.
2A or 2B and may also interact with the software architecture
of FIG. 3. For example, the pipeline of FIGS. 4A and 4B may
be implemented as software executing on the CPU and/or
GPU processes. Note that the GPU may execute various
software on the GPU to perform portions of the graphics
pipeline and/or may include dedicated hardware for perform-
ing those portions, as desired.

In the graphics pipeline of F1G. 4A, the pipeline may begin
with vertex data in 402. The vertex data may specify the
vertices of the graphics data to be rendered. In one embodi-
ment, the vertex data may include data about polygons with
vertices, edges and faces that constitute an entire scene.

In 404, the vertex data of 402 may be processed by a vertex
shader. More particularly, the vertex shader may be run for
each vertex, e.g., by the GPU. This process may transform
each vertex’s 3D position in virtual space to the 2D coordi-
nate at which it will appear on the display. The vertex shader
may manipulate various properties, including position, color,
texture coordinate, etc. As shown, the vertex shader 404 may
be informed by texture data 416 and/or shader uniform data
418.

In 406, primitives may be assembled from the vertices
output from 404. For example, in this stage vertices may be
collected and converted into geometric shapes, e.g., triangles.

In 408, the primitives may be used in rasterization. More
particularly, the primitives from 406 may be filled with pixels
or fragments.

In 410, the fragment shader (e.g., executed by the GPU)
may add textures and final colors to the fragments. Fragment
shaders may typically take into account scene lighting and
related effects, such as bump mapping and color toning. As
shown, the fragment shader may be informed by texture data
416 and shader uniform data 418.

In 412, various per-fragment operations may be performed.
For example, the operations may combine the final fragment
color, its coverage, and/or degree of transparency with the
existing data stored at the associated 2D location in the frame
buffer to produce the final color for the pixel to be stored at
that location.

In 414, the data may be stored in physical memory which
holds the actual pixel values displayed on the screen. The
frame buffer memory may also store graphics commands,
textures, and/or other attributes associated with each pixel.
This data may be used to output the final image to the display.

FIG. 4B illustrates an abbreviated pipeline that may be
more appropriate for embedded systems. As shown, is the
pipeline includes vertex data 402, per-vertex operations 454
(similar to vertex shader 404), primitive assembly 406, ras-

10

15

20

25

30

35

40

45

50

55

60

65

8

terization 408, per-fragment operation 412, and frame buffer
414. This pipeline does not utilize the fragment shader 410 or
the shader uniform data 418. Additionally, the texture data is
only utilized by rasterization 408 rather than by shaders, as in
FIG. 4A.

Thus, FIGS. 4A and 4B illustrate exemplary graphics pipe-
lines that may be utilized in embodiments described herein.
However, other, different graphics pipelines are envisioned.
FIG. 5—Debugging Execution of an Application on a Target
Device

FIG. 5 illustrates a method for debugging an application
executing on a target device. The method shown in FIG. 5
may be used in conjunction with any of the computer systems
or devices shown in the above Figures, among other devices.
In various embodiments, some of the method elements shown
may be performed concurrently, in a different order than
shown, or may be omitted. Additional method elements may
also be performed as desired. As shown, this method may
operate as follows.

In 502, a target device may be coupled (or paired) to a host
device. As indicated above, the target device and host device
may be coupled together in a variety of ways, e.g., directly via
a wired or wireless connection, or indirectly, over a network
(e.g., an Intranet or the Internet).

In504, an application may be executed on the target device.
For example, the application may be developed using a devel-
opment environment program executed by the host device.
Theuser (e.g., the developer) may compile the application for
execution and/or deploy the application to the target device
using the development environment. For example, in
response to a command to run the application on the target
device, the development environment may automatically per-
form those actions. As indicated above, the development
environment program may also deploy other programs to the
target device, e.g., debugging programs or other programs as
desired.

Once the application is deployed on the target device, the
development environment program may initiate execution of
the application (and/or any other programs, such as those
described above) on the target device, e.g., by sending an
execution command to the target device. In one embodiment,
the user may select a “play” button, which may cause the
application to be compiled (if necessary), deployed (if nec-
essary), and executed by the target device. Thus, in 504,
execution of the application by the target device may be
initiated.

In 506, a breakpoint may be reached or detected at a first
time. For example, the breakpoint may be identified in the
source code of the application (and correspondingly in CPU
instructions resulting from compilation or interpretation of
the application). For example, the developer of the applica-
tion may have manually inserted a breakpoint into the code
using the development environment, e.g., indicating that the
application should cease execution upon reaching a particular
point in the application. Accordingly, the breakpoint may
have been compiled into the application, and upon execution,
one or more CPU instructions may be used to implement the
breakpoint to cease execution at the specified location of the
application. Alternatively, or additionally, a user may provide
input to initiate a breakpoint during execution of the applica-
tion. For example, while monitoring execution of the appli-
cation, e.g., visually, the user may provide input to cause the
application to cease executing. In one embodiment, the user
may provide the input to the host device, e.g., using a key-
board or mouse, or may provide the input to the target device,
as desired. Thus, the breakpoint may be initiated in a variety
of manners. Note that the breakpoint may also be considered

US 9,298,586 B2

9

a “capture event” or a “capture trigger event” which results in
the actions described herein. In some embodiments, such an
event may be implemented via a CPU breakpoint. Thus, the
term “breakpoint”, as used herein, includes embodiments
where it is implemented as a “capture event”.

In 508, in response to the breakpoint, the target device may
suspend or cease execution of the application, e.g., automati-
cally. Depending on how the breakpoint was specified, this
suspension may be initiated in a variety of manners. For
example, if the breakpoint was compiled into the application,
the breakpoint may be caused by a CPU instruction executed
by a processor of the device. Accordingly, in this embodi-
ment, the breakpoint may be detected locally. Similarly, if the
breakpoint is specified via user input to the target device, the
breakpoint may be detected locally. However, where the input
is received to the host device, the breakpoint may be detected
by the target device via a command sent from the host device.
For example, in one embodiment, the user may provide input
to stop execution of the application to the host device, e.g.,
using a keystroke to initiate the breakpoint, and, in response,
the host device may provide a command to the target device to
cease execution of the application. As discussed below,
regarding FIG. 6, the target device may save various infor-
mation (e.g., state information) regarding the application to
suspend the application, e.g., so that the application may be
resumed at a later point.

Additionally, in 510, information may be received from the
target device, e.g., for use in debugging the information. More
specifically, the target device may automatically capture this
information and provide the information to the host device.
For example, the target device may capture information
related to the current graphics frame, such as the graphics
commands executed in the current frame, e.g., of the graphics
framework. For example, the target device may capture infor-
mation of a graphics frame immediately following the break-
point. However, note that this embodiment is exemplary only,
and the target device may capture information for frames
prior to the breakpoint (e.g., using a measurement application
executing concurrently with the application, as discussed
herein).

The information may include data related to any step of the
graphics pipeline, e.g., from the application, the graphics
framework, the graphics driver, and/or the GPU, among other
possibilities. Thus, the information may be any of various
data that may be gathered from the target device to assist in
performing debugging. As discussed below, the information
may be used to display various graphics commands and
graphics data to the user, e.g., in the development environ-
ment on the host device.

In one embodiment, the information may be captured by a
measurement application executing on the target device, e.g.,
concurrently with the application. For example, the measure-
ment application may gather CPU load information, GPU
load information, and/or other information. In further
embodiments, the measurement application may intercept
and record graphics commands provided by the application.
Thus, the information may include those graphics commands
(e.g., encoded in a bitstream) and may be provided back to the
host device for performing the debugging, as discussed
below.

Note that the gathering of information and suspension of
the application in 508 and 510 may be performed in a differ-
ent order or may be performed concurrently, e.g., as a single
step.

In 512, graphics commands that were executed proximate
to the breakpoint may be displayed, e.g., on a display of the
host device to a developer of the application. In one embodi-

10

15

20

25

30

35

40

45

50

55

60

65

10

ment, the displayed graphics commands may correspond to
those called in the frame immediately following the break-
point. In one embodiment, a frame may be considered the list
of commands (e.g., graphics commands) that are executed
between one buffer render and the next (e.g., initiated by a
frame render command). In most cases, the render buffer is
redrawn in full each frame, although this need not be the
case—for example, if the application does not clear the render
buffers, then the results of a previous frame can remain in the
buffers, e.g., for further modification in the next frame render.

Alternatively, or additionally, the displayed graphics com-
mands may correspond to those called prior to the breakpoint
(e.g., for one or more frames prior to the breakpoint). How-
ever, the graphics commands may span over any desired
length of time, depending on how they were captured. For
example, as discussed above, a measurement application may
have captured graphics commands for any desired length of
time during execution of the application up to the point in
time of the breakpoint.

In one embodiment, the graphics commands may be dis-
played in a pane of the development environment executing
on the host device. Additionally, individual ones of the graph-
ics commands may be selectable by a user, e.g., to view other
code or graphics data associated with the selected graphics
commands, as discussed below. In one embodiment, a user
may select a first graphics command that interests the user,
e.g., to view more information about the state of the applica-
tion or graphics framework at that point in time.

The graphics commands discussed above may be graphics
commands along any portion of the graphics pipeline. For
example, as discussed above regarding FIG. 3, the graphics
application may include source code which uses certain
graphics API calls. This source code may be compiled into
CPU instructions which call functions of the graphics API.
Accordingly, during execution of the application, certain
graphics framework commands may be initiated or triggered
in response to the CPU. The graphics framework may in turn
use the graphics driver to initiate graphics instructions
executed by the GPU of the target device. As used herein,
“graphics commands” may refer to any of the graphics func-
tions or instructions that are outside of the application, e.g.,
those of the graphics framework, graphics driver, GPU, etc. In
one specific embodiment, the graphics commands may refer
to those of the graphics framework, which are initiated by the
application. Note that these graphics commands are triggered
by the application.

Additionally, in 514, source code corresponding to the
CPU instructions which generated or triggered the one or
more graphics commands may be displayed. For example, the
source code of the application may be displayed in another
pane of the GUI of the development environment. As dis-
cussed above, the user may select an individual graphics
command. In response, the portion of the source code that
initiated the graphics command may be visually indicated,
e.g., in the development environment. For example, the
graphics command may have been initiated (e.g., directly or
indirectly) by a particular portion of the source code. Accord-
ingly, the method may automatically determine the originat-
ing source code and highlight that portion of the source code,
e.g., in response to user selection of the graphics command.
Thus, a user may easily determine the originator of a particu-
lar graphics command, which may make the process of
debugging the application substantially easier when a graph-
ics glitch or issue is noticed by the user. Thus, instead of the
user manually figuring out the initiating source code of the
bug, the method may automatically identify the source code
from the specified graphics command.

US 9,298,586 B2

11

Note that the process may also operate in the reverse fash-
ion. For example, the user may be able to select a portion of
source code and the corresponding graphics commands may
indicated, e.g., visually, in the development environment.

Further, in 516, graphics data corresponding to the graph-
ics commands may also be displayed. For example, as dis-
cussed above, a first graphics command may be selected, e.g.,
by the user. Accordingly, graphics data that was displayed in
response to the first graphics command or at the time of the
first graphics command may be automatically displayed, e.g.,
within a portion of the development environment. For
example, the displayed graphics data may correspond to what
was shown on the target device’s display. In some embodi-
ments, the particular portion of the graphics data that was
affected or modified by the graphics command may be visu-
ally highlighted within the graphics data.

Similar to embodiments discussed above, the process may
operate in the reverse fashion for the graphics data. For
example, a user may select a portion or object of the graphics
data and the graphics command(s) and/or source code which
resulted in that portion may be visually indicated, e.g., high-
lighted. In one embodiment, the user may be able to view a
sequence of graphics data corresponding to the changes
implemented by each graphics command performed during
the period of time (e.g., the last data frame or the portion of
time where the information was gathered), e.g., “scrubbing”
through the sequence of modifications to the graphic based on
the graphics commands. Accordingly, the user may stop the
graphics data at a particular point in time and view the graph-
ics commands and/or source code associated with that graph-
ics data/point in time.

Thus, in one embodiment, a user may select one of the
graphics commands, and the corresponding source code
which caused the graphics command may be displayed. Addi-
tionally, the corresponding graphics of the graphics com-
mand may also be displayed. Thus, auser may be able to view
the inter-related source code, graphics command, and/or
graphics data. More specifically, the user may be able to view
the source code and/or graphics data associated with a graph-
ics command executed proximate to (e.g., within a frame) the
breakpoint. These debugging actions may be performed in
conjunction with a debug application executing on the target
device (e.g., acting to provide saved information interactively
or simply at the beginning of the debugging).

In one embodiment, the debug application may provide the
ability to replay the graphics commands, e.g., that occurred
proximate to the breakpoint, and provide that information to
the host device. For example, render data or information
stored in a buffer may be necessary to display graphics data
corresponding to a graphics command. Accordingly, the host
device may request the render data and the target device may
execute one or more graphics commands to generate or
retrieve the render data and supply it back to the host. For
example, the target device may replay the frame (e.g., the set
of graphics commands) up to and including the point of the
requested data to calculate the state at that point. Other types
of'data and queries and responses between the host and target
devices are envisioned. Thus, in some embodiments, rather
than providing all of the necessary debugging information
upon reaching the breakpoint and/or suspending the applica-
tion, the host device and target device may iteratively request
and provide information (respectively) during the debugging
process.

After debugging is completed, e.g., after a user ends the
debugging or requests that the application resume execution,
the target device may resume execution of the application,
e.g., by loading the saved state and continuing execution of

20

40

45

50

12

the application, as discussed in more detail below regarding
FIG. 6. However, in further embodiments, execution of the
application may be stopped or closed upon reaching the
breakpoint rather than suspended. Additionally, the applica-
tion may be re-executed rather than resumed. Thus, the sus-
pension of the application and resumption of the application
may not be necessary—other embodiments are envisioned.
FIG. 6—Suspending and Resuming Execution of an Appli-
cation

FIG. 6 illustrates a method for suspending and resuming
execution of an application on a target device, e.g., for per-
forming testing, such as debugging. The method shown in
FIG. 6 may be used in conjunction with any of the computer
systems or devices shown in the above Figures, among other
devices. More specifically, FIG. 6 provides further details
regarding suspension and provision of information, indicated
regarding F1G. 5 above. In various embodiments, some of the
method elements shown may be performed concurrently, in a
different order than shown, or may be omitted. Additional
method elements may also be performed as desired. As
shown, this method may operate as follows.

In 602, an application may be executed on the target device,
e.g., similar to 504 described above.

In 604, a breakpoint may be detected, e.g., as discussed
above in 506.

In 606, information related to the application may be cap-
tured automatically, and in 608, execution of the application
may be suspended automatically. For example, the current
state of the application may be saved for later resumption. In
some embodiments, the state information and/or other infor-
mation that may be used for later resumption may be stored in
non-volatile memory (e.g., the target device’s long term stor-
age device) and/or volatile memory (e.g., RAM), as desired.
Note that the capturing of state information may be related to
any portion of the target device, e.g., within the graphics
pipeline, such as the application, the graphics framework, the
graphics driver, the GPU, the CPU, etc.

In one embodiment, in addition to capturing state informa-
tion, various portions of the target device may be locked in
order to suspend execution of the application. For example,
the graphics framework may be locked using a framework
command to suspend the current state of the graphics frame-
work. This locking may apply to various subsystems within
the target application, e.g., without affecting other processor
orapplications executing on the target device. For example, in
this particular example, access to the graphics framework
may be locked for the target application only, not for every
process or application of the target device. In one embodi-
ment, the locking may be performed to allow for orderly
suspension and/or resumption of the target application. More
precisely, debugging commands or operations may or may
not be executed before or after suspension on one or more
subsystems (e.g., the graphics framework). These commands
or operations may or may not require exclusive access, within
the target application, to the subsystem they affect. In one
embodiment, locking may be necessary because execution of
these commands or operations need to occur within the
execution context of the application. Similar embodiments
apply to other portions of the target device, either in software
or hardware.

In 610, a debugging application may be executed by the
target device. The debugging application may be configured
to provide information to the host device to perform debug-
ging. Similar to embodiments discussed above, this debug-
ging information may be provided initially, e.g., upon sus-
pension of the application, or in an iterative manner, e.g.,
numerous times, in response to requests from the host device.

US 9,298,586 B2

13

For example, as discussed above, the initial information may
indicate the set of graphics commands executed in the graph-
ics frame proximate to the breakpoint, although other periods
of times are envisioned (e.g., prior to the breakpoint). The
additional information could include requested data from a
render buffer, which may require re-execution of some of the
graphics commands by the target device to determine the
current state of the render buffer. Said another way, the re-
execution of the graphics commands may restore the state of
the requested render buffer to a point in time (e.g., location in
the captured sequence of graphics commands) specified in the
requests, such that the resulting state of the render buffer may
be obtained from the target device and provided to the host
device. Accordingly, that data may be automatically deter-
mined and provided to the host device in response to the
request.

In some embodiments, the debugging application may be
distributed among multiple applications or software compo-
nents. For example, functionality of the debugging applica-
tion may be split among a measurement or capture applica-
tion that may be executed concurrently with or even within
the application of 602 and/or a playback application executed
after suspension of the application of 602. For example, the
initial debugging information may be captured in addition to
the state data at the point in time of 606 above. In one embodi-
ment, a measurement application (or even the application
itself) may gather the initial debugging information provided
to the host device, such as the set of graphics commands
executed prior to or after the breakpoint (e.g., corresponding
to the graphics frame immediately after to the breakpoint).
For example, this measurement application may intercept
graphics commands resulting from execution of the applica-
tion, which may be used for later playback, e.g., in a bitstream
format. In some embodiments, this measurement application
may be executed to capture this information for as long or as
short a period as desired (e.g., the measurement application
could capture the information throughout execution of the
application, such as when a debugging option has been
invoked). The measurement application could even be com-
piled into the application when requested.

Accordingly, this initial debugging information may also
allow a playback application to re-execute the graphics com-
mands in order to reproduce the data within the captured time
period. More specifically, the debugging application in 610
may be used to re-execute graphics commands (or generally
re-enact execution of the graphics framework) during the
captured period of time, such as the graphics frame immedi-
ate after the breakpoint. This re-execution may be necessary
in order to provide necessary debugging information to the
host device during the debugging process.

Accordingly, in 612, debugging information related to the
application may be provided to the host device, e.g., at a
single time, such as initially, or multiple times in an iterative
fashion.

Note that the specific order of 606, 608, 610, and 612 may
be performed in a different order, as desired. For example, the
initial debugging information may be gathered before the
application is suspended. In another embodiment, the state
data may be gathered after the application is suspended. Thus,
any of a variety of feasible orders may be used for 606-612.
Similar remarks generally apply to any of the method ele-
ments described herein.

In 614, execution of the application may be resumed, e.g.,
after debugging has been performed. For example, a user may
request that the target device resume execution of the appli-
cation by providing input to the host device. Accordingly, the
host device may provide a command to the target device to

10

15

20

25

30

35

40

45

50

55

60

65

14

resume execution of the application. Resumption of execu-
tion may be performed by reloading the state data saved in
606, unlocking portions of the target device with respect to
the application (e.g., as discussed above such as regarding the
graphics framework), ceasing execution of the debugging
application, etc. Accordingly, the application may resume
execution at the point of suspension, proximate to the point
that the breakpoint was reached (e.g., the frame after the
breakpoint was reached) thereby providing a smoother
debugging experience for the developer.

In one embodiment, the process of suspending the appli-
cation, performing debugging (e.g., using a debugging appli-
cation executing on the target device, e.g., in conjunction with
the development environment executing on the host device),
and resuming the application may be performed in a seamless
manner, e.g., which is transparent to the user. For example,
the user may not be aware that the application is suspended,
that a new debugging application was launched, that the
debugging application was ended, and the application was
resumed in the debugging process.

Note that the methods described above may be used for
purposes other than or in addition to debugging, as desired.
For example, various other testing that may require or benefit
from suspension of execution of an application may be per-
formed using the above-described methods. Thus, the meth-
ods described herein are not limited to only performing
debugging.

Specific Embodiment Related to the Method of FIG. 6

The following describes one specific embodiment related
to the method of FIG. 6. This embodiment is provided as an
example only, and is not intended to limit the scope of the
systems and methods described herein.

Upon reaching a breakpoint, debugging information may
be captured from the executing application. When the capture
session finishes, and a “suspend after capture” option has
been enabled (e.g., at the time the capture session was initi-
ated), code injected in the inferior, i.e., the application being
debugged, may engage a global graphics framework (e.g.,
OpenGL) lock to prevent any progress in the graphics sub-
system, and may then suspend the inferior using kernel func-
tionality, such as APIs. This process may ensure that the
application is suspended as soon as the graphics framework
capture finishes, thus minimizing the latency (and any change
in the state of the program) between the end of the capture and
suspension of the application.

Accordingly, a debugging application (e.g., a playback
application) may be launched, and the inferior may be placed
in the background. This operation may only be a visual opera-
tion at that point since the inferior has already been sus-
pended. The debugging application may provide debugging
information to the host device initially and/or multiple times
to assist in performing debugging, as discussed herein.

When the developer is done debugging the frame and
desires resumption of execution of the application (e.g., by
selecting “continue”), the frame debugger may notity a moni-
toring process running on the target device. The notification
may request to resume the inferior process (e.g., using kernel
functionality) and bring the inferior process back to the fore-
ground (e.g., using OS SPIs). When the process resumes
execution, the code injected in the inferior may unlock the
global graphics framework lock to allow forward progress in
the graphics subsystem. Under memory pressure, the target
device may be free to page out read-only code and data pages.
They may be reloaded from memory when next accessed.
FIGS. 7A-9C—Exemplary GUIs Corresponding to the
Method of FIG. 5

US 9,298,586 B2

15

FIGS. 7A-9C are exemplary screen shots of a development
environment for debugging execution of an application on a
target device, e.g., according to one embodiment of the meth-
ods of FIGS. 5 and 6.
As shown in FIG. 7A, multiple graphics commands within
a frame are shown in the tree structure on the left hand side of
the GUI. This portion of the GUI is shown in larger form in
FIG. 7B. In this particular case, the graphics command “1341
glDrawElement(GL_TRIANGLES, 21006, GL_ . . . ” is
selected. Correspondingly, on the right hand side, shown in
more detail in FIG. 7D, the source code which called the
graphics command is shown. Additionally, in the middle por-
tion, shown in more detail in FIG. 7C, the present graphic
corresponding to the graphics command is displayed. Fur-
ther, the object being modified by the graphics command is
highlighted within the graphic. Said another way, the center
panel shows the state of the frame buffer at that point in the
frame with the geometry for the current draw call highlighted
by a wire frame. Other panels show other diagnostic infor-
mation related to the application.
FIG. 8A is largely the same as FIG. 7A, except the current
graphics call has been expanded in the tree structure of the left
hand panel. More specifically, the CPU stack for the GL call
is now displayed. This is shown in more detail in FIG. 8B
Finally, in FIG. 9A, a specific point in the CPU call stack is
selected (“0-[Renderer renderStructure WithGroupSetup:]”),
shown in more detail in FIG. 9B. In response, the center panel
of the GUI has changed to the source code corresponding to
that element, which is shown in more detail in FIG. 9C. In this
particular example, it is the same command highlighted in
FIGS. 7A and 8A in the right hand panels, shown in more
detail in FIG. 7D.
In one embodiment, the GUI shown in FIGS. 7A-9C may
be used in the following manner, which is described in rela-
tion to the GUI shown in FIG. 7A. The user may step through-
out the graphics commands in the frame, e.g., by selecting
them in the navigator window on the left, the hierarchy con-
trol on the top, or the frame-scrubber control in the debug bar
(above the bottom windows). At the current command, the
user may be shown the state of the graphics framework (e.g.,
the OpenGL in this case) at that point with the current con-
tents of the current render-target front and center. In the
window to the right, current objects (e.g., resources) that are
currently bound may be shown, and below that, the line of
source code corresponding to the graphics command. In the
windows at the bottom, the full list of all the graphics frame-
work (e.g., OpenGL) state may be shown in detail.
Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.
We claim:
1. A method for debugging a graphics application execut-
ing on a target device, the method comprising:
executing the graphics application by the target device,
wherein the graphics application includes instructions
which when executed by a central processing unit (CPU)
invoke graphics commands for a graphics processing
unit (GPU) to generate graphics on a display;

detecting a breakpoint for the graphics application at a first
time;

in response to detecting the breakpoint:

sending a lock command to a graphics framework that
provides application programming interfaces for the
GPU;,

5

10

15

20

25

30

35

40

45

50

55

60

65

16

in response to receiving the lock command at the graph-
ics framework, locking the graphics framework for
the GPU on the target device to prevent commands
being sent to a graphics driver on the target device;

capturing information of the graphics application based
on the breakpoint;

suspending execution of the graphics application;

providing the information to a host device to perform
debugging; and

resuming execution of the graphics application on the tar-

get device.

2. The method of claim 1, wherein the suspending execu-
tion of the graphics application comprises:

determining state data of the graphics application at the

first time; and

storing the state data of the graphics application;

wherein the state data is usable by the target device to

resume execution of the graphics application on the tar-
get device at the state of the first time.

3. The method of claim 1, further comprising:

in response to detecting the breakpoint and after the sus-

pending execution of the graphics application, executing
a debugging application, wherein the executing the
debugging application comprises providing the infor-
mation to the host device to perform debugging.

4. The method of claim 1, wherein the information corre-
sponds to a graphics frame immediately after the first time.

5. The method of claim 1, further comprising:

receiving a request from the host device for graphics data

corresponding to a first graphics command executed
after the first time;

providing the graphics data in response to the request.

6. The method of claim 1, further comprising:

receiving a request from the host device related to a first

graphics command executed proximate to the first time;
re-executing the first graphics command; and

providing a response to the request based on the re-execut-

ing the first graphics command.

7. The method of claim 6, wherein the re-executing is
performed by executing a playback application on the target
device.

8. The method of claim 1, wherein the graphics framework
is locked only for the graphics application.

9. The method of claim 1, wherein other applications dif-
ferent than the graphics application executing on the target
device are not effected when the graphics framework is
locked for the graphics application.

10. A non-transitory, computer accessible memory
medium storing program instructions for debugging a graph-
ics application, wherein the program instructions are execut-
able by a processor to:

execute a graphics application;

receive an indication of a breakpoint for the graphics appli-

cation; in response to detecting the breakpoint, execute a
debugging application on the target device;

send a lock command to a graphics framework that pro-

vides application programming interfaces for a graphics
processing unit (GPU);

in response to receiving the lock command at the graphics

framework, lock the graphics framework for the GPU on
a target device to prevent commands being sent to a
graphics driver on the target device;

suspend execution of the graphics application;

capture debugging information related to the graphics

application; and

provide the debugging information to a host device for

performing debugging wherein said capturing debug-

US 9,298,586 B2

17
ging information and providing the debugging informa-
tion is performed by the debugging application.

11. The non-transitory, computer accessible memory
medium of claim 10, wherein the program instructions are
further executable to:

receive a command from the host device to resume execu-

tion of the graphics application; and

resume execution of the graphics application in response to

the command from the host device.

12. The non-transitory, computer accessible memory
medium of claim 10, wherein the program instructions are
further executable to:

in response to detecting the breakpoint, execute a debug-

ging application on the target device, wherein the cap-
turing debugging information and providing the debug-
ging information is performed by the debugging
application.

13. The non-transitory, computer accessible memory
medium of claim 10, wherein the program instructions are
further executable to:

receive a request from the host device for information

regarding a graphics command;

execute a playback application to determine the informa-

tion; and

provide the information to the host device in response to

the request.

14. The non-transitory, computer accessible memory
medium of claim 10, wherein the indication of the breakpoint
is received from the host device.

15. The non-transitory, computer accessible memory
medium of claim 10, wherein the indication of the breakpoint
is received in response to user input.

16. The non-transitory, computer accessible memory
medium of claim 10, wherein the breakpoint is comprised in
the graphics application.

17. The non-transitory, computer accessible memory
medium of claim 10, wherein the graphics framework is
locked only for the graphics application.

18. The non-transitory, computer accessible memory
medium of claim 10, wherein other applications different
than the graphics application executing on the target device
are not effected when the graphics framework is locked for
the graphics application.

19. A device, comprising:

a display for presenting graphics;

a central processing unit (CPU) coupled to the display;

a graphics processing unit (GPU) coupled to the CPU and

the display;

at least one memory coupled to each of the CPU and the

GPU, wherein the memory stores a graphics application

executing on a target device, a graphics framework, and

a debugging application, wherein the graphics applica-

tion executes on the CPU and provides graphics com-

mands to the GPU through the graphics framework to

generate graphics data for presentation on the display;

wherein, in response to receiving an indication of a break-

point for the graphics application, the CPU:

sends a lock command to the graphics framework that
provides application programming interfaces for the
GPU;,

locks the graphics framework for the GPU on the target
device to prevent commands being sent to a graphics
driver on the target device in response to receiving the
lock command at the graphics framework;

captures information of the graphics application;

suspends execution of the graphics application;

15

20

25

30

40

45

50

55

65

18

provides debugging information related to the graphics
application to a host device for performing debug-
ging; and

receives a command from the host device to resume
execution of the graphics application;

wherein the target device is configured to resume execution

of the graphics application based on the command from
the host device.

20. The device of claim 19, wherein the command from the
host device is received in response to user input to the host
device.

21. The device of claim 19, wherein the debugging appli-
cation is further executable to:

receive a request from the host device for further informa-

tion regarding a graphics command;

execute a playback application to determine the further

information; and

provide the further information to the host device in

response to the request.

22. The device of claim 19, wherein the debugging appli-
cation is further executable to load a frame of the graphics
application.

23. The device of claim 19, wherein the suspending execu-
tion of the graphics application comprises executing kernel
commands of the target device to suspend the graphics appli-
cation.

24. The device of claim 19, wherein the graphics frame-
work is locked only for the graphics application.

25. The device of claim 19, wherein other applications
different than the graphics application executing on the target
device are not effected when the graphics framework is
locked for the graphics application.

26. A non-transitory, computer accessible memory
medium storing program instructions for debugging a graph-
ics application, wherein the program instructions are execut-
able by a processor to:

execute a graphics application, wherein the executing the

graphics application comprises executing central pro-
cessing unit (CPU) instructions which generate graphics
commands, wherein the graphics commands are execut-
able by graphics hardware to display graphics on a dis-
play;

in response to detecting a breakpoint in the graphics appli-

cation:

send a lock command to a graphics framework that pro-
vides application programming interfaces for a graph-
ics processing unit (GPU) on a target device;

in response to receiving the lock command at the graph-
ics framework, lock the graphics framework for the
GPU on the target device to prevent commands being
sent to a graphics driver on the target device;

capture state information of the graphics application for
later resumption of the graphics application;

suspend execution of the graphics application;

execute a debugging application;

capture debugging information regarding the graphics
application a plurality of times;

provide the debugging information to a host device a
plurality of times for performing debugging; and

in response to a command from the host device, resume

execution of the graphics application using the state
information.

27. The non-transitory, computer accessible memory
medium of claim 26, wherein the capturing state information
comprises capturing state information of the graphics hard-
ware.

US 9,298,586 B2

19

28. The non-transitory, computer accessible memory
medium of claim 26, wherein the debugging information
regards a frame of the graphics application immediately after
the breakpoint.

29. The non-transitory, computer accessible memory
medium of claim 26, wherein the capturing and providing
comprises:

receiving a request from the host device for graphics data

related to a graphics command; and

providing the graphics data to the host device.

30. The non-transitory, computer accessible memory
medium of claim 29, wherein the providing the graphics data
to the host device comprises re-executing the graphics com-
mand to generate the graphics data.

31. The non-transitory, computer accessible memory
medium of claim 26, wherein the graphics framework is
locked only for the graphics application.

32. The non-transitory, computer accessible memory
medium of claim 26, wherein other applications different
than the graphics application executing on the target device
are not effected when the graphics framework is locked for
the graphics application.

#* #* #* #* #*

10

15

20

20

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,298,586 B2 Page 1of1
APPLICATION NO. : 13/306530

DATED : March 29, 2016

INVENTOR(S) : Andrew M. Sowerby, Jean-Francois Roy and Filip Iliescu

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims,

Column 16; Line 60-61: In Claim 10, delete “the GPU on a target device” and insert -- a graphics
processing unit (GPU) on a target device --, therefor.

Column 16; Line 67: In Claim 10, after “performing debugging” insert -- , --,

Signed and Sealed this
Twenty-eighth Day of June, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

